

Liberté Égalité Fraternité

WHAT DO WE KNOW ABOUT THE CURRENT STATE OF IAQ IN BUILDINGS?

Corinne Mandin

First WHO/Europe Indoor Air Conference

20 September 2023 Bern, Switzerland

Indoor air quality in dwellings

High number of emission sources, various outdoor environments, heterogeneity of buildings, diversity of occupants and habits

→ an extreme diversity of situations

Determinants of indoor air pollution are well-known: smoking, proximity to traffic, dry-cleaning shop, attached garage, new furniture/flooring/paints, cooking, cleaning products, insecticides, incense/candle burning, low air change rate, water damage, etc.

Indoor air quality is associated with socio-economic status (Brown et al. 2016; Ferguson et al. 2020)

Indoor air quality in dwellings

2-butoxy-éthylacétate 25 1-méthoxy-2propylacétate styrène □ trichloroéthylène 20 Acroléine tétrachloroéthylène 2-butoxyéthanol □ 1 méthoxy2propanol 15 Benzène Éthvlbenzène o-xylène 10 1,2,4-triméthylbenzène 1.4-dichlorobenzène n-décane 5 ■ m/p xylène n-undécane Acétaldéhyde toluène 0 Hexaldéhyde Indoor Outdoor Formadéhyde

Median concentrations of aldehydes and VOCs in $\mu g/m^3$

First French housing survey, 2003-2005

567 dwellings representative of the French housing stock

Median concentrations in the main bedroom, passive sampling for 7 days

(Kirchner et al. 2007)

Indoor air quality in schools

Some specificities

School supplies

High density of furniture

Daily cleaning

Proximity to road traffic

Combined to poor air change because of **infrequent window opening** (noise, security, thermal comfort, omission, etc.) and **no mechanical ventilation system in most of school buildings**

Images: Pixabay

Indoor air quality in schools: European SINPHONIE project

SINPHONIE Schools Indoor Pollution & Health Observatory Network in Europe Final Report

EGIONAL ENVIRONMENTAL CENTER

🔉 sinphonie

Measurements carried out in 2011-2012 in 337 classrooms belonging to 140 buildings of **112 schools in 23 countries**

Concentrations in $\mu g/m^3$

What about offices?

Some specificities

High density of office equipment

Daily cleaning

In some high-rise buildings, windows cannot be open

Office buildings appear to be **mostly equipped with mechanical ventilation and better maintained**

Images: Pixabay

148 rooms in 37 buildings from 8 countries instrumented in summer 2012 and winter 2012-2013, recently (< 10 years) built or retrofitted

Seasonal variations in indoor concentrations (* = statistically significant difference) (Mandin et al. 2017)

The use of **fragrance-free cleaning products reduce aldehyde indoor concentrations** (Ventura et al. 2014)

Indoor air quality is permanently evolving

Example in France

Median concentrations (main bedroom) in μ g/m³, passive sampling for 7 days

Indoor air quality is permanently evolving

Examples in Germany

RSI

Aldehydes: Relative change (%) in median and geometric mean (GM) concentrations between GerES IV (2004-2007; n=579) and GerES V (2013-2016; n=533)

Child's bedroom or living room, passive sampling for 7 days

New uses, new habits... higher indoor concentrations

(Salthammer et al. 2011)

(Destaillats et al. 2020)

(Azimi et al. 2016)

(Arnold et al. 2023)

And: terpenoids, fluorinated compounds, siloxanes, synthetic musks, pyrethroids, etc. due to the increased use of scented products, personal care products, stain and water repellents, etc. (Weschler C. 2009)

Images: Pixabay

New substances on the market

Fig. 7. Percentage of DINCH-positive samples and 95th percentiles.

DINCH in German dwellings (settled dust)

DEHT in German dwellings (settled dust)

(Nagorka et al. 2011)

Substances identified through new analytical techniques Non-targeted analysis

Chemical substances in indoor air or indoor settled dust, adapted from Pourchet et al. (2020)

IRSI

And what about IAQ under climate change?

Inspired by (Kinney P. 2022; Mansouri et al. 2023)

For building stock adaptation: a combined IAQ and energy performance approach is absolutely needed

To conclude

We already know a lot

We know enough to act to improve IAQ

We need to keep on monitoring indoor air:

- to identify pollutants or situations that could be at risk for health
- to assess the efficiency of policies or interventions
- to raise awareness among occupants and buildings managers

Liberté Égalité Fraternité

